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Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous
Hamiltonian system having a Hamiltonian function of the

form: positions momenta
A A

H(aliqb"-aqs’ blipzr"apT\l)

The time evolution of an orbit (trajectory) with initial
condition

P(O):(ql(O), qz(O)a---an(O)a pl(O), pz(O)a---apN(O))
IS governed by the Hamilton’s equations of motion

dp; _ dH dqizaH
dt  ogq, dt op,




Variational Equations

We use the notation X = (4;,d5,.-«,dnsP1:Pose-:PN) " The
deviation vector from a given orbit is denoted by

V = (X4, 0Xy...,0X )T, With N=2N

The time evolution of v is given by
the so-called variational equations:

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93



Definition of GALI

In the case of an N degree of freedom Hamiltonian system or
a 2N symplectic map we follow the evolution of

k deviation vectors with 2<k<2N,

and define (Ch.S., Bountis, Antonopoulos, 2007, Physica D)
the Generalized Alignment Index (GALI) of order k :




Behavior of GALI, for chaotic motion

GALI, (2<k<2N) tends exponentially to zero with
exponents that involve the values of the first k largest
Lyapunov exponents 6., 6, ..., 6, :

G A I_ I (t) oC e-[(61'62)+(01'63)+..,+(61-0k)]t
k

The above relation is valid even If some Lyapunov
exponents are equal, or very close to each other.



Behavior of GALI, for chaotic motion

3D system:

! I ! T T T

(b)-

0
0.06 — slope=-(c,-c,)/In(10) 1
2 i
2 slope=-(3c -0, )/In(10)
e -4 slope=-4c /In(10) -
g. —_ - slope=-6a /In(10)
oS 0 6L
: 0.04 &I
e Q 4L
= D
(=% =] N
g -—
a .10 |
0.02 [
A2 b
14 |
0.00 RT3 SR U H WP W P S U I S




Behavior of GALI, for regular motion

If the motion occurs on an s-dimensional torus with s<N then the
behavior of GALI, is given by (Ch.S., Bountis, Antonopoulos, 2008,
Eur. Phys. J. Sp. Top.):

-

constant If 2<k<s
GALIk(t)oc<tk1_S If s<k<2N-s
L If k <
PEED If 2N-s<k <2N

while in the common case with s=N we have :

(constant if 2<k <N
GALI, (t)c{ 1

g iT N <ks<2N




Behavior of GALI, for regular motion

3D Hamiltonian
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Behavior of GALI,

Chaotic motion:

GALI,—0 exponential decay
GAL]I k (t) o« e'[(01'02)+(01'03)+~--+(01'°k)]t

Regular motion:
GALI, —constant # 0 or GALI, —0 power law decay

constant If 2<k<s

tki_s If s<k<2N-s

T If 2N-s<k <2N




Global dynamics
« GALLI, (practically equivalent to the use of SALI)

* GALI

Chaotic motion: GALI—0
(exponential decay)
Regular motion:
GALI—constant£0

Chaotic orbit
Regular orbit
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Global dynamics

GALI, with k>N

The index tends to zero both for
regular and chaotic orbits but with
completely different time rates:

Chaotic motion: exponential decay
Regular motion: power law

Chaotic orbit —— -
Regular orbit —— -

log(GALI,)
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Barred galaxies
NGC 1433 ~ NGC 2217




Barred galaxy model

The 3D bar rotates around its short z-axis (X: long axis and y: intermediate). The
Hamiltonian that describes the motion for this model is:

1
H =§(p§ +p; + P2)+V(X,Y,2) - Q, (xp, — yp,) = Energy

This model consists of the superposition of potentials describing an axisymmetric
part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A).

a) Axisymmetric component:

1) Plummer sphere: 1) Miyamoto—Nagai disc:
GM GM,
V r (X1 y1 Z) - > VdiSC (X’ y’ Z) -
wonere \/x2+y2+22+552 \/x2+y2+(A+\/Bz+zz)2
- _ pc 0 du 2 n+1
b) Bar component.vbar(x,y,z)__;;Gabcn+1 L A(u)(l_m )™,
Ferrers bar ? ’ ’
( ) where m*(u) = 2X + 2y + 22 , A*(u) = (@ +u)(b® +u)(c® +u),
105 GM, a“+u b°+u c“+u
Pe = 327 abc n : positive integer (n = 2 for our model) , A: the unique positive solution of m*(1) =1
ity s 1-m?)", form<1 RVERN &
Its density Is: p= pe( ) ,WheremZ:X2+y2+22,a>b>candn:2.
0, form>1 a~ b° c



Time-dependent barred galaxy model

The 3D bar rotates around its short z-axis (X: long axis and y: intermediate). The
Hamiltonian that describes the motion for this model is:

1
H =§(pf +p; + p;)+V (X Y,2,t)-Q, (xp, - yp,) = Energy

This model consists of the superposition of potentials describing an axisymmetric
part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A).

a) Axisymmetric component: Mg + Mg () +Mp(t) =1 with My (t)=M;(0) +at

1) Plummer sphere: 1) Miyamoto—Nagai disc:
GM, Vo (%.y,2) = GM (t)

V X! 1Z -
sphere( y ) \/x2+y2+22+852 \/X2+y2+(A+\/BZ'|‘ZZ)2

b) Bar component:v. (x.y.z) = —zGabc—Le {*-3Y_1_ m2uy)
) p wr (X,,2) = —rGabe [ - me ()™
Ferrers bar 2 2 2
( ) where m*(u) = 2X + 2y + 22 , A*(u) = (@ +u)(b® +u)(c® +u),
105 GM . (t) a“+u b°+u c +u
P = 327 abc o n : positive integer (n = 2 for our model) , A: the unique positive solution of m*(1) =1

ity s 1-m?)", form<1 RVERN &
Its density is: ,_ p,(1—m?) wherem?=2+Y 1% aspb>candn=2.
0, form>1 a® b® c
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Time-dependent 3D barred galaxy model

Interplay between chaotic and regular motion
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Symplectic Integrators (Sls)

Formally the solution of the Hamilton equations of motion can be written

as. v n
X H,X) =L, X = X=Y X =6t X
n>0 '~

dt
where X is the full coordinate vector and L., the Poisson operator:
N
LHf:Z oH of oH of
op; 0q; 0q; op;

=1

If the Hamiltonian H can be split into two integrable parts as H=A+B, a
symplectic scheme for integrating the equations of motion from time t to
time t+t consists of approximating the operator e™+ by

j
eTLH — eT(LA"'LB) — HeCiTLAedi‘rLB + O(Tn+1)
i=1
for appropriate values of constants c;, d;. This is an integrator of order n.

So the dynamics over an integration time step t 1s described by
a series of successive acts of Hamiltonians A and B.




Symplectic Integrator SABA,C

The operatorerl‘“can be approximated by the symplectic integrator
[Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]:

SABA. = eclTLA edlfLB eCzTLA eleLB eclrLA
2
L ﬁ C :ﬁ d :i

with ¢, = =-¥2 |
2 6 3 2

The integrator has only small positive steps and its error is of order 2.

In the case where A is quadratic in the momenta and B depends only on
the positions the method can be improved by introducing a corrector C,
having a small negative step: . C

C=o " 288
2-\3

I c=——.
with Y

Thus the full integrator scheme becomes: SABAC, = C (SABA,) C and its
error is of order 4.



The Klein — Gordon (KG) model

1 1
Zpl"' up U (u,+1-u)
= 2 4 2W
with fixed boundary condltlons Uy=Po=Un+1=Pn+1=0. Typically N=1000.

1 3
Parameters: W and the total energy E. & chosen uniformly from [5,5}

Linear case (neglecting the term u%/4)
Ansatz: u=A, exp(imt). Normal modes (NMs) A, | - Eigenvalue problem:
2A| — 8|A| - (A|+1 + A|_1) with 4= sz -W -2, & = W(él -1)

The discrete nonlinear Schrodinger (DNLS) eqguation
We also consider the system:

A ) .
=2 el + 5l (Wi Huraw)

where g chosen uniformly from [—V?V,V?V} and B isthe nonlinear parameter.

Conserved quantities: The energy and the normS = ZI |l//| |20f the wave packet.



Distribution characterization

We consider normalized energy distributions in normal mode (NM) space

Z, = E" with E = E(Av +w2A2) , Where A, Is the amplitude

Zm Em

of the vth NM. N
Second moment: M, = Z(v )z, with ¥ = sz

Different spreadlng regimes

1=986679892 t=986679892.

é ,|1 é é 0 200 400 600 800 1000



The KG model

We apply the SABAC, integrator scheme to the KG Hamiltonian by using

the spllttlng
N ~
pI 1 1 2
= +—uI +=ut+—(u,, - )
< 4 2w
\ J
l_'_l ,
/ u; = u

é;TLA'{Elf; =P ETLB: = [_ (H + 3) + L( + -2 )] +
2 A ]9; . P = un€ + u; W Up_ |+ Uy up) |7+ py.

with a corrector term which corresponds to the Hamiltonian function:

C={{AB},B}= i[u, (& +u,2)—v%(u,_1 +u,,, -Zu,)} .

=1



The DNLS model

How can we use Symplectic Integrators for the DNLS model?

= Z‘(ﬁ “/’| 2
|

_“/fl 4 '('/’|+1'//T WY )’ 1 =i(q' *ip))
J2

P+ D ) (q| + p.’) ~Onlvs = Py pn+1J

p
E'q
/ BH

rL, 6}‘; = g cos(oyt) 4+ ppsin(o; 1), ‘L
e : + ‘
p; = picos(et) — g sin(e 7), e (q,p) =C

(1) (a,p)"

ar = e + Blgt + p}H/2



Evaluation of the C(t) matrix

The equations of motion for the Hamiltonian B can be written as:

0 -1 0 --- 0 0
( ' [l\

-1 0 —=1--- 0
0 -1 0 -.- 0 0

0 0 o 0 —1
\n 0 0 =10 )

Then the matrix C(t) is given by C(r) = ( “;Eir; “illgi‘r%)
’ — 5 T ] COs T

[

¥ o oL . —1)F 41 D
Aza.rza.‘ G Ar) — )" A2kl 241
( n{AT) FZ (2k+1)!

) ,
IZ'[]'H E

The evaluation of the elements of matrices cos(At) and sin(At) can be
obtained through the determination of the eigenvalues and eigenvectors of

matrix A itself (Gerlach, Meichsner, Ch.S., 2016, Eur. Phys. J. Sp. Top).



DNLS model: 2 part split Sls

Order 2: Leap-frog (3steps) LF(7) =ezlacTloezla
SABA, (5 steps)

Order 4: Yoshida, 1990, Phys. Lett. A (7 steps)

,L_S_I(T} — ffcl TLAE-.:dl TLB E-f{:ﬂ TL_A_ ffdﬁTLBffC?TLAffdl TLB ffcl TL_A .

o . o 1 . L 1 _21 /3 L 1 . . 21 Sa
‘ﬁ]t-]l 1 — 2(2_21.{.3]. Co — 2(2_2153}1 d-l — 3_91/33 dj — T 3_ai/3

ABAS864 [Blanes et al., 2013, App. Num. Math.] (15 steps)

Order 6: Using the composition method refereed as ‘solution A’ in [Yoshida,
1990, Phys. Lett. A] we construct the 6th order symplectic
integrator S° having 29 steps

SO(7) = S%(w3T) S (wat)S? (w1 T)S% (woT)S? (w1T)S? (waT)S? (wsT)
where S? is the SABA, integrator, while the values of wg, wy, w,,
w, can be found in [Yoshida, 1990, Phys. Lett. A]



2 part split SIs: Numerical results

1. LF t=0.0025
. SABA, t=0.01
8 n S*1=0.05
10 £
19 S t=0.25
14
, E,: relative energy
) error
3 :
— S,: relative norm error
1 S T, CPU time (sec)
0 -
P Gerlach, Meichsner,

Ch.S., 2016, Eur. Phys.

1 2 3 4 5 1 2 3 4 5 J Sp TOp.

logypt logqo t

N=1000, W=4, g=0.72, H;=-28.5



DNLS model: 3 part split Sls

Symplectic Integrators produced by Successive Splits (SS)

A B

Hp = Z(é‘(qf + pf)+§(qf +pf f‘- 0nOner - P pml’j

v r
e i—a  Bu, ON\B:

q, = qi cos(a;T) + prsin(oT), {
p; = prcos(ot) — qpsin(a; ),

py=pi+(q-1+q)T { g = qr— (pi—1 + piy1)T

Using the SABA,, integrator we get a 2" order integrator with 13
steps, SS?: _
P [(3 gﬁT]L A

' ' 3-43 3-43 ' '
G oo [BRRNEB D, o

v : L[
g2 ‘g e g2 tg 3 a2 ?g




DNLS model: 3 part split Sls

Three part split symplectic integrator of order 2, with 5

steps: ABC?
& /] 2
H = € (42 2\, P (42 2\ _ )
5 Z(‘z (aF + p7 )+ (a+ p ) ‘ qn?m“pn 5)1)
A B C
T T T T
L, L Ly Lo
? A B L B A
ABC = ¢e? g2 e'ce? g

This low order integrator has already been used by e.g. Chambers, MNRAS
(1999) — Gozdziewski et al., MNRAS (2008).



DNLS model: 3 part split Sls

Order 4: Starting from any 2" order symplectic integrator S2"d, we can

Order 6:

construct a 4™ order integrator S*" using the composition method
proposed by Yoshida [Phys. Lett. A (1990)]:

4th 2nd 2nd 2nd 21/3 1
ST () =S (xT)XST(X,T) XS (X, T)y X, =

-2_21/3’ X1:2_21/3
In this way, starting with the 2"d order integrators SS?and ABC? we
construct the 4t order integrators:

SS* with 37 steps ABC*, with 13 steps

Using the ABAH864 integrator [Blanes et al., 2013, App. Num.
Math.], where the B part is integrated by the SABA, scheme, we
construct the 4th order integrator: SS%,, integrator with 49 steps.

Using the composition method proposed in [Sofroniou & Spaletta,
2005, Optim. Methods Softw.] we construct the 6th order
symplectic integrator ABC®s5; with 45 steps.



3 part split SIs: Numerical results

,ww..m.*

m””"ff g.

wJ r{L

1 m,. W‘ W

Py 1]
[

‘IH-‘.\I. )

0919 M,

10gyp t logyo t

N=1000, W=4, g=0.72, H;=-28.5

10910 Sy

logyg T¢

ABCy,, 1=0.05
S5 1=0.05

ABCS/q; 1=0.225

E,: relative energy
error

S,: relative norm error
T.: CPU time (sec)

Gerlach, Meichsner,
Ch.S., 2016, Eur. Phys.
J. Sp. Top.
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2 and 3 part split Sls:
Comparing their efficiency

2L - N S
a b
151 (@) T 5.5 (b)
M
1+ -k y
05 - e b1
=
o 9 ' S g
y 6.5 [
0.5 - .
_‘I 1 1 1 | 1 1 1 1 _;l' 1 1 1 |
10 100 10 100
N N

Best 2 part split:
Best 3 part split: ABC®sq; 7=0.225

N = number of sites, t=10%
E,: relative energy error, T_: CPU time (sec)



Summary

« GALI, indices are perfectly suited for studying the dynamics
of time-dependent models as they able to capture subtle
changes in the nature of an orbit even for relatively small time
Intervals.

* We presented several efficient symplectic integration methods
suitable for the integration of the DNLS model, which are
based on 2 and 3 part split of the Hamiltonian.

v’ 2 part split methods preserve better the second integral of the
system (i.e. the norm)

v For small lattices (N < 70) 2 part split methods are
computationally more efficient, while for larger lattice 3 part
split method should be used.
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